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J. Phys.: Condensed Matter. l(1989) 7239-7244. Printed in the UK 

COMMENT 

Comment on ‘Dynamical properties of a two- 
dimensional Coulomb fluid’ 

M Howard Lee? and J Hongj: 
f Physics Department, University of Georgia, Athens, Georgia 30602, USA 
i: Department of Physics Education, Seoul National University, Seoul 151, Korea 

Received 3 May 1989 

Abstract. Agarwal and co-workers have reported on dynamical properties of a classical two- 
dimensional, one-component homogeneous plasma with a logarithmic potential for an 
arbitrary r = pe’. Some of their results may now be compared with those obtained ana- 
lytically for l- = 2. In addition, their phenomenological response function can be analysed 
with respect to the third moment and compressibility sum rules. This analysis indicates the 
extent of the validity of their response function. 

A few years ago, Agarwal and co-workers [l] published an interesting paper on the 
dynamical properties of a classical two-dimensional one-component homogeneous 
plasma with a logarithmic potential for an arbitrary coupling strength r = be2.  Here /3 
is the inverse temperature and eis the electron charge. This work represents an important 
advance in understanding of this system. To our knowledge, no one has since reported 
any further progress on it. Their work gives information on, among others, the longi- 
tudinal component of the third moment and the plasmon dispersion relation. We are 
primarily concerned with these two results. For simplicity, this system will be referred 
to as 2~ r. 

The frequency moments are static properties. Therefore, one can show that they 
depend on the static structure factor s k ,  where k is the wavevector. For ZD arbitrary, 
one does not know the analytic expression of s k .  Hence, Agarwal and co-workers [l] 
have given their results in a series expansion in k .  

= 2 can be 
tested against analytical solutions now available at this particular value of the coupling 
strength. Jancovici [2] has obtained an analytic expression for Sk if = 2. Hence, certain 
static quantities, e.g. ,  the third moment, can be expressed analytically. More difficult is 
the plasmon dispersion relation. To  obtain it, Agarwal and co-workers relied on a 
response function which they termed phenomenological. We find that this response 
function when r = 2 satisfies two important necessary conditions. Hence, it deserves 
more than a phenomenological label that the authors themselves have given. Perhaps 
more important, this response function has been used in other problems [3-61. We, 
therefore, believe that the significance of our analysis goes beyond their paper. 

The main purpose of our Comment is to indicate that their results for 
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We first deal with the third moment sum rule. The expression for the longitudinal 
component of the third frequency moment is well known. For 2~ r = 2 it may be 
expressed in a simplified form shown below. 

M 3 ( k )  = ( 0 3 ( k ) ) / ( o ( k ) )  = 3a + 1 - Zk, (1) 

where 

and a = k2/4. Here N is the number of electrons and S(q) is the static structure factor. 
We have set the plasma frequency wp  = 1, where n is the number density 
and m is the mass of the electron. We have further expressed the wavevector k in units 
of the inverse ion sphere radius ri' = (nn)'l2, so that it is now dimensionless. For 2D 
r = 2, we find that a = k2/4 is a natural and simplifying unit rather than a dimensionless 
k. Our equation (1) corresponds to that of equation (1) of Agarwal and co-workers [ 11. 

A few years ago, it was shown [2] that for 2~ r = 2 

S k  = 1 - e-'. 

21k = 1 - ~ ' ( 1  - e-' 1. 

(3) 

Using (3), one can show that [ 7 , 8 ]  

(4) 
Hence, 

M 3 ( k )  = 3a + &[I + ~ ' ( 1  - e-' 11. ( 5 )  

It follows directly that 

M3(k)  = 1 + #k2 + l k 4  192 - l k 6  3072 + O(ks) .  (6) 

The above expansion agrees with the one given in [ l ]  for r = 2 (their equation (11)) 
except the coefficient of k4. Theirs is given as 1/48r = &. There is perhaps a typo- 
graphical error in their coefficient of k4. 

We now deal with the response function. The plasmon dispersion relation is obtained 
from the frequency-dependent response function Xk(W), where w is the frequency. In 
general, this quantity is not exactly known. Agarwal and co-workers [ l ]  introduced an 
interesting phenomenological one, which is a function of x, not just w ,  where x = wt 
and t is a parameter defined as 

t - 2  = M3(k)  - R2 (7) 

where R2 = ask1 if 
by a superscript A.  It is given as 

= 2. We shall distinguish their response function (equation (21)) 

X f ( 0 )  = x f ( x )  = 2pat2Z(x)/[1 - (1 - 2aS,'t2)Z(x)] (8) 

where 2 is the plasma dispersion function (see below) [ 9 ] .  

xi(o) as follows: 
The response function is usually expressed in terms of an ideal response function 

X k ( O )  = x8(w>/{1 - u k [ l  - Gk(w) IX! (W))  ( 9 )  

where uk is the Fourier transform of the Coulomb interaction and G k ( w )  is a dynamic 
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local field [lo]. For 2~ r = 2, one has the following: vk = 2ne2/k2, )$(CO) = - npW(u), 
U = 2w/k, where 

Hence, 2 and Ware related as Z ( y )  = W(v/2y).  Putting together, we express (9) as 

X k ( w )  = xk(u) -npW(u)/{l + a-'[l - Gk(U)IW(U)}* (11) 
We see that (8) shows some resemblance to (11). But the comparison is not yet 

possible because (8) is given as a function of x .  Thus it is necessary to find the meaning 
of their parameter z in terms of standard quantities, e.g., Gk = Gk(w = 0) .  For classical 
systems at r = 2, Gk is related to Sk as follows [9]: 

Hence, using (3) and ( 5 )  in (7) we get 

where we have introduced 

s,' = 1 + (1 - Gk)/U. 

'T-2 = 2a + Gk - I k  = 2 4 1  + q2(k)] 

Gk - I k  = 2aqz(k). 

x = wz = w/Q2a(l+ q 2 )  = U/V2(1+ q 2 ) .  

(12) 

(13) 

(14) 

(15) 
Since both Gk and I k  are exactly known for 2~ 

That is, the frequency in their response function is scaled. This is not necessarily 
unphysical or undesirable. However, it must be handled consistently to avoid the 
appearance of its effect on some higher order terms. 

= 2, q2(k) is known exactly. Finally 

Using (13) in (8), we obtain 

p - ' x f ( x )  = Z(x)/{l + C ' [ l  - G ~ ( x ) ] ~ ( x ) }  

Gf (x)  = Gk - aqz[Z-'(x) - 11 

Gk2)(u) = Gk - u ~ ~ ( W - ' ( U )  + u2 - 1). 

(16) 

(17) 

where we have defined 

which may be regarded as their dynamic local field. It too resembles the second-order 
dynamic local field given by us [ 8, 113, i. e , ,  

The significance of (18) is that if it is used in ( l l ) ,  the resulting response function will 
satisfy the first and third moment sum rules [ l l ]  as well as the compressibility sum rule. 

The plasmon dispersion relation can be obtained directly from (16) by setting 
Re[Xf(x)]-' = 0. That is, 

For x + x ,  the dispersion function has the following asymptotic expansion: 

Now from (3), (4) and (12), one has 

and 

(18) 

a(1 f 7 2 ) 2 - ' ( X )  + 1 - Gk - U q 2  = 0. (19) 

z-yx) = - 2 x 2  + 3 + 3x-2 + 0 ( ~ - 4 ) .  (20) 

Gk = - h a 2  + Oa3 + o(a4) (21) 

q2(k) = 4 + Oa - &a2 + &a3 + O(a4). (22) 

w;(k)" = 1 + =k2 1 6  + -(- 16 li + W ) k 4  + O(k6). (23) 

Together with (20)-(22), we get from (19) 

The coefficient of k2 agrees with the one originally given in [l], but the coefficient of k4 
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does not. Theirs (see their equation (24)) is given as &r-l - $(l/r + & ) 2 .  For r = 2, 
it is &(Q - W ), a negative value. We believe this is an error. If (18) were used in (ll), 
one would obtain [SI 

02p(k) = 1 + #k* + L(L 16 12 + y ) k 4  + o(k6). (24) 
The two expansions (23) and (24) differ in the coefficient of k4,  and also in the coefficients 
of higher order terms. It comes from the frequency scaling introduced by Agarwal and 
co-workers mentioned earlier. Its effect begins to appear from the fourth order term of 
k .  

Frequency moments are ordinarily defined with respect to the response function as 

[IO1 1 “  
( w 2 ” + l ( k ) )  = ---I d w  w2’+’ Imxk(w)  v = 0 , 1 , 2 , .  . . . (25) 

--3: 

The above moments can also be obtained from an equation of motion, hence inde- 
pendently of the response function. It is known, for example ( w ( k ) )  = nk2/m. The third 
moment for 2~ r = 2 is given by (1). We shall use (16) to test whether it satisfies the first 
and third moment sum rules for 2~ r = 2. 

The scaled frequency in the response function (16) may be ‘unscaled’ as follows: 

-1 
(w2’+l(k))* = - ( k 2  s2/m/3)’+’ 1% dyy2”-’ I m x t ( y / f i )  (26) 

--cc 
n 

where s2 = 1 + q 2 ( k ) .  Adopting the conventional sign [9], we write the right-hand side 
of (16) as ( -  l/n/3) x i f ( x )  and obtain 

( (27) + @))A = (n@/x) (k2s2/m/3) ’ + 1 

and 

G f ( Y >  = Gk - aq2[W-’(y) - 

Im F(y) = s-*[Im W(y)  + c ~ Y - ~  Im W(y) + O ( Y - ~ ) ]  

cf = (1 - 1, - 3aq2)/as2 = c2. 

(29) 

(30) 

(31) 

By expanding the denominator of F(y) for y + CO, we get 

where 

To obtain (31) we have used (14). 

so for v = 0 and 1 only: 
Now by substituting (30) in (27) we can evaluate the moments for any v. We shall do 

(dW* = (n/3/..)(k2s2/mB)s-* dY Y Im WY) 
--cc 

= nk2/m = ( o ( k ) ) .  (32) 

(w3(k))* = (n/3/n)(k2 s2/m/3)2 s - ~  dy y3 Im W(y) + cf dy y Im W(y)) ii: 
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= np(k2 ~ / m / 3 ) ~ ( 3  + c 2 )  = ( w 3 ( k ) ) .  (33)  

In evaluating (32  and 33), the integrands with negative powers of y can be shown to 
vanish [8] .  We see that the response function of Agarwal and co-workers [ l ]  satisfies the 
first and third moment sum rules. In this manner one may further show that it does not, 
however, satisfy the fifth and higher moment sum rules. 

Finally we turn to the compressibility sum rule. It is well known that the isothermal 
compressibility K ,  is related to the screened static susceptibility xr via the following 
relation [ 121 

-n2KT = l i m x r .  
k- 0 

(34)  

Now the screened static susceptibility is related to the static response function as [ 121 

Xskc = X k / ( l  + U k X k )  = X i / ( 1  + UkGkXOk)  (35)  

whereXk = xk(w =-0) and Gk = G k ( w  = 0 ) .  Thus, to satisfy the compressibility sum rule 
it is sufficient to possess a correct small-k form of Gk.  

For 2~ r = 2 one can calculate the isothermal compressibility from its equation of 
state. We find that 

l imxr  = -2np .  
k-. 0 

If we insert the exact form of Gk in the static limit of the response function of Agarwal 
and co-workers we should obtain (36) .  That their frequency is scaled becomes immaterial 
since this sum rule is concerned with the static limit only. From (16 ) ,  taking w = 0, i.e., 
x = 0, and adopting the conventional form, we get 

( - l / n p ) x f  = 1 / [1  + a - ' ( l  - G k ) ]  

xr = np/ ( - l  + G k / a ) .  

(37)  

where Gf(0)  = G k ,  since Z ( x  = 0) = 1. Hence 

(38)  

Now using (21 ) ,  we recover (36)  by taking the small-k limit of (38) .  
We have noted that the phenomenological response function due to Agarwal and 

co-workers is distinguished by its use of a scaled frequency. Nevertheless we see that it 
satisfies some of the necessary conditions for the response function, e.g., the first and 
third moment sum rules, in the manner of our second-order response function. The 
frequency scaling will cause a disagreement between this work and others more con- 
ventional in some of dynamical properties, e.g., dispersion relation. 

A response function which can satisfy the third moment and compressibility sum 
rules represents a significant advance. In the recent literature there has been much 
confusion over developing what may be termed aconsistent theory [13 ,14] .  For example, 
it has been realised that a generalised RPA theory cannot be made to satisfy the third 
moment sum rule [15, 161. As we have elucidated here, but perhaps not previously 
recognised, the work of Agarwal and co-workers [ l ]  is an improvement. It is in the right 
direction toward the construction of a consistent dynamical theory of the many-body 
problem. 

Our work has been supported in part by the NSF, ARO and KOSEF. 
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